4. A line with direction cosines proportional to 2, 1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The co-ordinates of each of the point of intersection are given by

Any point on the line
$$\frac{x}{1} = \frac{y+a}{1} = \frac{z}{1} = t_1$$
 (say) is $(t_1, t_1 - a, t_1)$ and any point on the line $\frac{x+a}{2} = \frac{y}{1} = \frac{z}{1} = t_2$ (say) is $(2t_2 - a, t_2, t_2)$

Now direction cosine of the lines intersecting the above lines is proportional to $(2t_2 - a - t_1, t_2 - t_1 + a, t_2 - t_1)$.

Hence
$$2t_2 - a - t_1 = 2k$$
, $t_2 - t_1 + a = k$ and $t_2 - t_1 = 2k$

On solving these, we get t_1 = 3a , t_2 = a. Hence points are (3a, 2a, 3a) and (a, a, a).